Filter products

96 Products

Landrum Rear Coil Springs

All rear springs are closed and ground on both ends which insures proper contact with the jack plate and spring seat.

Made of the highest grade of Chrome Silicon wire found worldwide.

Cold wound, not hot wound. Each coil-over spring is properly heat treated and stress relieved to insure the sides of spring remain parallel during installation.

Standardized testing procedures.

Powder coated, not plated to protect the spring from hydrogen embrittlement, a corrosive break down of the spring's surface which decreases the spring's life.

Each spring is designed with the correct pitch and height ratio to insure consistent rate throughout the entire cycle.

TRUE RATE OF A SPRING: Knowing the actual rate of each spring is crucial. Landrum Spring has elected to rate, dyno, print (numerical as well as graphical data), engrave each spring's serial# and rate. Furthermore, Landrum Spring is recognized as the only company in the racing industry world wide doing so.

Some manufactures even feel and state that racers should monitor a spring's free height instead of it's rate. Landrum Spring as well as many top-level teams have found this to be counter productive when setting up a car and compiling consistent results. While it is important to monitor free height for spring set, it is more crucial to know the actual rate in its working range. For example, while testing at Charlotte, a car had a 375# tagged spring in the rear, the driver felt that the car was loose on corner entry and the Hoosier tire temperatures supported his feel. After stiffing the spring to a 400# tagged spring the driver did not feel any changes. The tire temperatures still supported his feel. After the supposed spring change, the team then began to change shocks, sway-bars, and pan-hard bar heights. At the end of the day, the springs where rated. After viewing the data sheets we found that the 375# tagged spring was actually a 387# and the 400# tagged spring was a 385#. So the actual change in spring rate was not an increase of 25# as was intended but a decrease of 2#. This is why the driver and the tire temps showed no change. Furthermore, the crew made unnecessary changes, wasted valuable time, resulting in wear and tear on the engine, tires and other components.

CORRECT MARKING: Having a spring with the correct markings is very crucial. Most companies incorporate a metal tag denoting the "theoretical rate" of each spring. These theoretical rates are just that, "Theoretical". Knowing that every spring has it's own characteristics, Landrum Spring , engraves the exact rate of each and every GOLD COIL to 1/10lb. For instance, a J200 (5"o.d. x 13"tall x 200# coil spring) may be engraved 201.8.

SERIAL NUMBER: Having a spring that has it's own serial number is important. Every GOLD COIL has its own dyno sheets incorporated in its box when leaving our facility. If a user was to loose their sheets then we should be able to pull the data up at a later date.

DATA PRINTOUTS: Having springs packaged with data information is crucial to any serious race team. All of the GOLD COILS are packaged with dyno sheets detailing the dynamic rate in a graphical form as well as numerical form. These data sheets clearly shows the details of the load in pounds of force, in increments of 1/10th of an inch for each and every GOLD COIL.

STANDARDIZED TESTING: Landrum Spring uses the same rating system that many of the race teams that participate in the premier race divisions (CUP, ARCA, and IRL uses.) Through interviewing various teams, we found that current spring supliers were using many various methods of rating coil springs. These methods, good or bad, can be confusing at times. We felt that more standardized rating would be helpful to everyone involved. Each and every data sheet clearly shows the pre load as well as the displacement that the spring was tested at. This eliminates the inaccuracies and confusion of trying to figureout how each spring is rated.

SPRINGS WITH HIDDEN COST $$$$: Simply put it, buying GOLD COILS may save most any race team money. By purchasing springs that are already accurately rated, you will not have to pay your engineer ($$$$), team manager ($$$$), or crew chief ($$$$) to rate springs that you have purchased. Furthermore, a race team will not have to purchase additional springs to fill the void left by the springs that did not rate properly to the "theoretical rate" that they where suppose to be. In addition, teams would not have to purchase expensive testing equipment. Moreover, accurate spring changes will allow teams to be more progressive in their test sessions and eventually reflect in their qualifying efforts and then onto the race.